Passer au contenu principal

Functional Genomics and Bioinformatics

Functional Genomics and Bioinformatics

This research unit studies brain tumor initiation and progression. Glioblastoma mulforme (GBM) is the most predominant malignant brain tumor, and exhibits dismal prognosis thereby devastating the lives of patients and their families. GBM is treated by surgery, radiotherapy, and chemotherapy with initial positive response, but is rapidly recurrent with few treatment options. Therefore, a better understanding of molecular underpinings of the tumor recurrence and drug resistance is essential for development of more therapeutic options.

In vitro 3D culture model

Rodent-based models are essential to understand the mechanism of GBM initiation and progression. However, rodents differ on genetic and molecular levels compared to human, resulting in vastly dissimilar responses to anti-tumor drug treatment. Over the past few years, we have developed and improved in vitro 3D culture models for human brain tissue, called brain organoids, that recapitulate microenvironment of developing brain. Using this unique systems, our team investigates cancer-normal cell interactions and drug responses.

Artificial Intelligence and Machine Learning

The complexity of cellular interaction and cellular state dynamics gives rise to substantial challenges to develop robust computational approaches that can consider interconnected networks in highly dimensional spaces from large-scale genomic datasets, such as single-cell transcriptome profiling. Artificial intelligence (AI) simulates human intelligence in the computer by learning patterns and features from data and drawing solution to a given task. Machine learning (ML) is a subset of AI and can model cellular events from massive amounts of data to derive meaningful biological conclusions. Our team takes an advantage of AI and ML techniques to dissect molecular events from the genomic datasets.